2,985 research outputs found

    Data-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

    Full text link
    We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of the worst-case distribution within this Wasserstein ball. The state-of-the-art methods for solving the resulting distributionally robust optimization problems rely on global optimization techniques, which quickly become computationally excruciating. In this paper we demonstrate that, under mild assumptions, the distributionally robust optimization problems over Wasserstein balls can in fact be reformulated as finite convex programs---in many interesting cases even as tractable linear programs. Leveraging recent measure concentration results, we also show that their solutions enjoy powerful finite-sample performance guarantees. Our theoretical results are exemplified in mean-risk portfolio optimization as well as uncertainty quantification.Comment: 42 pages, 10 figure

    Multistage Stochastic Portfolio Optimisation in Deregulated Electricity Markets Using Linear Decision Rules

    Get PDF
    The deregulation of electricity markets increases the financial risk faced by retailers who procure electric energy on the spot market to meet their customers’ electricity demand. To hedge against this exposure, retailers often hold a portfolio of electricity derivative contracts. In this paper, we propose a multistage stochastic mean-variance optimisation model for the management of such a portfolio. To reduce computational complexity, we perform two approximations: stage-aggregation and linear decision rules (LDR). The LDR approach consists of restricting the set of decision rules to those affine in the history of the random parameters. When applied to mean-variance optimisation models, it leads to convex quadratic programs. Since their size grows typically only polynomially with the number of periods, they can be efficiently solved. Our numerical experiments illustrate the value of adaptivity inherent in the LDR method and its potential for enabling scalability to problems with many periods.OR in energy, electricity portfolio management, stochastic programming, risk management, linear decision rules

    Worst-Case Value-at-Risk of Non-Linear Portfolios

    Get PDF
    Portfolio optimization problems involving Value-at-Risk (VaR) are often computationally intractable and require complete information about the return distribution of the portfolio constituents, which is rarely available in practice. These difficulties are further compounded when the portfolio contains derivatives. We develop two tractable conservative approximations for the VaR of a derivative portfolio by evaluating the worst-case VaR over all return distributions of the derivative underliers with given first- and second-order moments. The derivative returns are modelled as convex piecewise linear or - by using a delta-gamma approximation - as (possibly non-convex) quadratic functions of the returns of the derivative underliers. These models lead to new Worst-Case Polyhedral VaR (WCPVaR) and Worst-Case Quadratic VaR (WCQVaR) approximations, respectively. WCPVaR is a suitable VaR approximation for portfolios containing long positions in European options expiring at the end of the investment horizon, whereas WCQVaR is suitable for portfolios containing long and/or short positions in European and/or exotic options expiring beyond the investment horizon. We prove that WCPVaR and WCQVaR optimization can be formulated as tractable second-order cone and semidefinite programs, respectively, and reveal interesting connections to robust portfolio optimization. Numerical experiments demonstrate the benefits of incorporating non-linear relationships between the asset returns into a worst-case VaR model.Value-at-Risk, Derivatives, Robust Optimization, Second-Order Cone Programming, Semidefinite Programming

    Generalized Decision Rule Approximations for Stochastic Programming via Liftings

    Get PDF
    Stochastic programming provides a versatile framework for decision-making under uncertainty, but the resulting optimization problems can be computationally demanding. It has recently been shown that, primal and dual linear decision rule approximations can yield tractable upper and lower bounds on the optimal value of a stochastic program. Unfortunately, linear decision rules often provide crude approximations that result in loose bounds. To address this problem, we propose a lifting technique that maps a given stochastic program to an equivalent problem on a higherdimensional probability space. We prove that solving the lifted problem in primal and dual linear decision rules provides tighter bounds than those obtained from applying linear decision rules to the original problem. We also show that there is a one-to-one correspondence between linear decision rules in the lifted problem and families of non-linear decision rules in the original problem. Finally, we identify structured liftings that give rise to highly flexible piecewise linear decision rules and assess their performance in the context of a stylized investment planning problem.

    Robust Portfolio Optimization with Derivative Insurance Guarantees

    Get PDF
    Robust portfolio optimization aims to maximize the worst-case portfolio return given that the asset returns are allowed to vary within a prescribed uncertainty set. If the uncertainty set is not too large, the resulting portfolio performs well under normal market conditions. However, its performance may substantially degrade in the presence of market crashes, that is, if the asset returns materialize far outside of the uncertainty set. We propose a novel robust portfolio optimization model that provides additional strong performance guarantees for all possible realizations of the asset returns. This insurance is provided via optimally chosen derivatives on the assets in the portfolio. The resulting model constitutes a convex second- order cone program, which is amenable to efficient numerical solution. We evaluate the model using simulated and empirical backtests and conclude that it can out- perform standard robust portfolio optimization as well as classical mean-variance optimization.robust optimization, portfolio optimization, portfolio insurance, second order cone programming

    Robust Resource Allocations in Temporal Networks

    Get PDF
    Temporal networks describe workflows of time-consuming tasks whose processing order is constrained by precedence relations. In many cases, the durations of the network tasks can be influenced by the assignment of resources. This leads to the problem of selecting an ‘optimal’ resource allocation, where optimality is measured by network characteristics such as the makespan (i.e., the time required to complete all tasks). In this paper, we study a robust resource allocation problem where the functional relationship between task durations and resource assignments is uncertain, and the goal is to minimise the worst-case makespan. We show that this problem is generically NP-hard. We then develop convergent bounds for the optimal objective value, as well as feasible allocations whose objective values are bracketed by these bounds. Numerical results provide empirical support for the proposed method.Robust Optimisation, Temporal Networks, Resource Allocation Problem

    Aggregation and discretization in multistage stochastic programming

    Get PDF
    Multistage stochastic programs have applications in many areas and support policy makers in finding rational decisions that hedge against unforeseen negative events. In order to ensure computational tractability, continuous-state stochastic programs are usually discretized; and frequently, the curse of dimensionality dictates that decision stages must be aggregated. In this article we construct two discrete, stage-aggregated stochastic programs which provide upper and lower bounds on the optimal value of the original problem. The approximate problems involve finitely many decisions and constraints, thus principally allowing for numerical solutio

    Robust Markov Decision Processes

    Get PDF
    Markov decision processes (MDPs) are powerful tools for decision making in uncertain dynamic environments. However, the solutions of MDPs are of limited practical use due to their sensitivity to distributional model parameters, which are typically unknown and have to be estimated by the decision maker. To counter the detrimental effects of estimation errors, we consider robust MDPs that offer probabilistic guarantees in view of the unknown parameters. To this end, we assume that an observation history of the MDP is available. Based on this history, we derive a confidence region that contains the unknown parameters with a pre-specified probability 1-ß. Afterwards, we determine a policy that attains the highest worst-case performance over this confidence region. By construction, this policy achieves or exceeds its worst-case performance with a confidence of at least 1 - ß. Our method involves the solution of tractable conic programs of moderate size.

    From Infinite to Finite Programs: Explicit Error Bounds with Applications to Approximate Dynamic Programming

    Full text link
    We consider linear programming (LP) problems in infinite dimensional spaces that are in general computationally intractable. Under suitable assumptions, we develop an approximation bridge from the infinite-dimensional LP to tractable finite convex programs in which the performance of the approximation is quantified explicitly. To this end, we adopt the recent developments in two areas of randomized optimization and first order methods, leading to a priori as well as a posterior performance guarantees. We illustrate the generality and implications of our theoretical results in the special case of the long-run average cost and discounted cost optimal control problems for Markov decision processes on Borel spaces. The applicability of the theoretical results is demonstrated through a constrained linear quadratic optimal control problem and a fisheries management problem.Comment: 30 pages, 5 figure
    corecore